Ortonormal

Fra testwiki
Version fra 9. aug. 2022, 19:35 af imported>KnudW imported>KnudW (Gendannelse til seneste version ved Hjart, fjerner ændringer fra 45.228.210.92 (diskussion | bidrag))
(forskel) ← Ældre version | Nuværende version (forskel) | Nyere version → (forskel)
Spring til navigation Spring til søgning

I matematikken siger man, at to vektorer er ortonormale, hvis det er ortogonale enhedsvektorer.

I planet R² og rummet R³ er det indre produkt typisk underforstået at være prikproduktet, så her kaldes to vektorer v og w ortonormale, hvis

  • 𝐯=𝐯𝐯=1 og 𝐰=1,
  • 𝐯𝐰=0.

Helt generelt kaldes to vektorer v, w i et indre produkt-rum V ortonormale, hvis

  • 𝐯=𝐯,𝐯=1 og 𝐰=1,
  • 𝐯,𝐰=0.

Her kan første betingelse udskiftes af den ækvivalente betingelse <v, v> = <w, w> = 1.


Hvis B = {v1, v2, ..., vn} er en basis for et indre produkt-rum V, kaldes B en ortonormalbasis (evt. en ortonormal basis), hvis alle vektorene i B er indbyrdes ortonormale. Dvs. <vi, vi> = 1 for alle i, og <vi, vj> = 0 for alle ij. Eller endnu kortere: <vi, vj> = δij, hvor δij er Kroneckers deltafunktion.

Som et eksempel på en ortonormalbasis kan nævnes enhedsvektorerne i, j og k i rummet R³, mht. prikproduktet.