Røringscirkler

Fra testwiki
Spring til navigation Spring til søgning

I geometrien er røringscirkler de cirkler som enten tangerer alle en trekants sider eller en af disse sider samt de to øvriges forlængelser. Alle trekanter har 4 røringscirkler: Én indskreven cirkel, som tangerer samtlige trekantens sider og 3 såkaldte ydre røringscirkler.[1]

Den indskrevne cirkel

Den indskrevne cirkel har sit centrum, hvor trekantens tre vinkelhalveringslinjer skærer hinanden.[2]

Den indskrevne cirkels radius kan beregnes vha. formlen:

r2=(sa)(sb)(sc)s,

hvor a,b,c er trekantens sidelængder, mens s=12(a+b+c) er halvdelen af trekantens omkreds.[3]

De ydre røringscirkler

Figur 1. En trekant med dens 4 røringscirkler: Den indskrevne cirkel er blå, og de 3 ydre røringscirkler er gule. Cirklernes centre (I, JA,JB,JC) er også markeret.

De ydre (gule) røringscirklers centre findes, hvor de (grønne) linjer, der halverer trekantsvinklernes nabovinkler, skærer hinanden. Jævnfør figur 1, af hvilken det ses, at hver af trekantens (røde) vinkelhalveringslinjer ligeledes går gennem en ydre røringscirkels centrum.[4]

De ydre røringscirklers radiusser kan beregnes med formlen

ra=s(sb)(sc)sa

hvor ra er radius i den ydre røringscirkel, som rører siden a, og a,b,c er trekantens sidelængder, mens s=12(a+b+c) er halvdelen af trekantens omkreds.[5].


Radius kan også beregnes ud fra kendskab til trekantens vinkler og én side:

ra=acosB2cosC2cosA2[6].

Andre formler

Der gælder følgende sammenhæng mellem den indskrevne cirkels radius r, den omskrevne cirkels radius R og de 3 ydre røringscirklers radiusser:

ra+rb+rcr=4R,[7].

Der er denne sammenhæng mellem røringscirklernes radiusser og trekantens areal T:

T2=rrarbrc[8].

Referencer

Bogen der henvises til i note 1-8:

Eksterne henvisninger

  1. Skabelon:Harvnb
  2. Skabelon:Harvnb
  3. Skabelon:Harvnb
  4. Skabelon:Harvnb. Citat: "Centrum for den ydre røringscirkel, der tangerer siden c og forlængelserne af siderne a og b er fælles skæringspunkt mellem vinkelhalveringslinien for C og vinkelhalveringslinierne for nabovinklerne til A og B."
  5. Skabelon:Harvnb
  6. Skabelon:Harvnb
  7. Skabelon:Harvnb
  8. Skabelon:Harvnb