Hjælp:Formatering med opmærkningskoder

Fra testwiki
Spring til navigation Spring til søgning

Videnskabelige symboler og formler på Wikipedia skrives bedst ved hjælp af opmærkningskoderne <math>...</math> og <chem>...</chem>. I det følgende er den vigtigste syntaks gennemgået.

Som forlæg er brugt https://www.mediawiki.org/wiki/Extension:Math/Help:Formula#Basics.

Se også Wikipedia:Videnskabelig notation for information om korrekt videnskabelig notation og formatering.

Mange koder er overtaget fra LaTeX, se Scott Pakin, The Comprehensive LaTeX Symbol List [1], 2017, som anfører tusindvis af symboler og deres tilhørende LaTeX-kommando. Som det fremgår af nedenstående anerkendeses \degree og \dprime ikke af <math>.

Eksempler på elementære udtryk og formler

Wikipedia kode Resultat
<math>\alpha</math> α
<math>\sqrt{81} = 9</math> 81=9
<math> f(x) = x^2 + 3\cdot x</math> f(x)=x2+3x
<math>\sqrt{1-e^2}</math> 1e2
<math>\Omega_\text{cirkel} = \frac {2 \cdot \pi }{P}</math> Ωcirkel=2πP
<math>x_{1,2} = \frac {-b \pm \sqrt{d} }{2 \cdot a}</math> x1,2=b±d2a
<math>\exist \, \alpha \in\mathbb{R} \text{ : } \varphi(x)=\alpha</math> α : φ(x)=α
<math>\int_0^\infty e^{-x^2}\textrm{d}x=\frac{\sqrt{\pi}}{2}</math> 0ex2dx=π2
<math>\alpha</math> = 6<sup>h </sup>12<sup>m </sup>34.5<sup>s</sup>

<math>\alpha = 6^\textrm{h} 45^\textrm{ m} 08.917^\textrm{s}</math>

α = 6h 12m 34.5s

α=6h45m08.917s

<math>\delta</math> = <math>-</math>67° 12′ 34.07″ <math>\delta = -67^\circ 12' 34.07''</math> <math>\delta = -67^\circ 12^\prime 34.07^{\prime\prime}</math> <math>\delta = -67</math>° <math>12</math>′ <math>34.07</math>″ δ = 67° 12′ 34.07″

δ=671234.07

δ=671234.07

δ=67° 1234.07

Fejl i matematikken (ukendt funktion '\degree'): {\displaystyle \degree} Fejl i matematikken (ukendt funktion '\dprime'): {\displaystyle \dprime} Fejl i matematikken (ukendt funktion '\tprime'): {\displaystyle \tprime} Fejl i matematikken (ukendt funktion '\qprime'): {\displaystyle \qprime}
<math>F_\odot \ \mathrm M _\odot\ \mathrm R _\odot\ \mathrm L _\odot</math> F M R L
<chem>H2SO4</chem> HA2SOA4
<chem>NaCl + AgNO3 -> NaNO3 + AgCl(v)</chem> NaCl+AgNOA3NaNOA3+AgCl(v)

Græske bogstaver

Klassiske græske bogstaver
Bogstav <math>...</math> syntaks Resultat
Alfa <math>\alpha </math>, <math>\Alpha </math> α, A
Beta <math>\beta </math>, <math>\Beta </math> β, B
Gamma <math>\gamma </math>, <math>\Gamma </math> γ, Γ
Delta <math>\delta </math>, <math>\Delta </math> δ, Δ
Epsilon <math>\varepsilon </math>, <math>\Epsilon </math> ε, E
Zeta <math>\zeta </math>, <math>\Zeta </math> ζ, Z
Eta <math>\eta </math>, <math>\Eta </math> η, H
Theta <math>\theta </math>, <math>\Theta </math> θ, Θ
Iota <math>\iota </math>, <math>\Iota </math> ι, I
Kappa <math>\kappa </math>, <math>\Kappa </math> κ, K
Lambda <math>\lambda </math>, <math>\Lambda </math> λ, Λ
My <math>\mu </math>, <math>\Mu </math> μ, M
Ny <math>\nu </math>, <math>\Nu </math> ν, N
Xi <math>\xi </math>, <math>\Xi </math> ξ, Ξ
Omikron <math>\omicron </math>, <math>\Omicron </math> o, O
Pi <math>\pi </math>, <math>\Pi </math> π, Π
Rho <math>\rho </math>, <math>\Rho </math> ρ, P
Sigma <math>\sigma </math>, <math>\Sigma </math> σ, Σ
Tau <math>\tau </math>, <math>\Tau </math> τ, T
Ypsilon <math>\upsilon </math>, <math>\Upsilon </math> υ, Υ
Phi <math>\varphi </math>, <math>\Phi </math> φ, Φ
Chi <math>\chi </math>, <math>\Chi </math> χ, X
Psi <math>\psi </math>, <math>\Psi </math> ψ, Ψ
Omega <math>\omega </math>, <math>\Omega </math> ω, Ω
Varianter
Bogstav <math>...</math> syntaks Resultat
Epsilon, variant <math>\epsilon </math> ϵ
Theta, variant <math>\vartheta </math> ϑ
Kappa, variant <math>\varkappa </math> ϰ
Pi, variant <math>\varpi </math> ϖ
Rho, variant <math>\varrho </math> ϱ
Sigma, variant <math>\varsigma </math> ς
Phi, variant <math>\phi </math> ϕ

Hebræiske bogstaver

Kun de fire første bruges matematisk
Bogstaver <math>...</math> syntaks Resultat
Alef, beth, gimel, daleth <math>\aleph, \beth, \gimel, \daleth </math> ,,,

Skriftsnit

Emne <math>...</math> syntaks Resultat
Fed skrift (boldface) \mathbf {abcxyzABCXYZ123} 𝐚𝐛𝐜𝐱𝐲𝐳𝐀𝐁𝐂𝐗𝐘𝐙𝟏𝟐𝟑
Skråskrift (italics) \mathit {abcxyzABCXYZ123} 𝑎𝑏𝑐𝑥𝑦𝑧𝐴𝐵𝐶𝑋𝑌𝑍123
Dobbeltstreg (blackboard) \mathbb {abcxyzABCXYZ123} 𝕒𝕓𝕔𝕩𝕪𝕫𝔸𝔹𝕏𝕐𝟙𝟚𝟛
Roman \mathrm {abcxyzABCXYZ123} abcxyzABCXYZ123
Sans serif \mathsf {abcxyzABCXYZ123} 𝖺𝖻𝖼𝗑𝗒𝗓𝖠𝖡𝖢𝖷𝖸𝖹𝟣𝟤𝟥
Kaligrafi \mathcal {abcxyzABCXYZ123} 𝒶𝒷𝒸𝓍𝓎𝓏𝒜𝒞𝒳𝒴𝒵123
Fraktur \mathfrak {abcxyzABCXYZ123} 𝔞𝔟𝔠𝔵𝔶𝔷𝔄𝔅𝔛𝔜123
Formindskede typer {\scriptstyle\text{abcxyzABCXYZ123}} abcxyzABCXYZ123
Blandede skriftsnit
Skråskrift
Opret skrift
Blanding

xyz\ x\ y\ z
\text{xyz x y z}
\text{Hvis }n\text{ er ulige...}

xyz x y z
xyz x y z
Hvis n er ulige...
Farvet tekst {\color{Blue}x^2}+{\color{Orange}2\cdot x}-{\color{LimeGreen}1} x2+2x1

Foruddefinerede farver

Nedenstående farvenavne er foruddefinerede:

Blue BlueGreen BlueViolet BrickRed Brown BurntOrange CadetBlue CarnationPink
DarkOrchid Emerald ForestGreen Fuchsia Mahogany Maroon Melon MidnightBlue
Mulberry NavyBlue OliveGreen Orange OrangeRed Orchid Peach Periwinkle
PineGreen Plum ProcessBlue Purple RawSienna Red RedOrange RedViolet
Rhodamine RoyalBlue RoyalPurple RubineRed Salmon SeaGreen Sepia SkyBlue
Emne <math>...</math> syntaks Resultat
Kodeeksempel til brug ved farver i formler {\color{Green} p}^2 + 2 \cdot {\color{Green} p} \cdot {\color{Red} q} + {\color{Red} q}^2 = ({\color{NavyBlue} p + q})^2 p2+2pq+q2=(p+q)2
Kodeeksempel med brug af selvdefineret farve \definecolor{orange}{RGB}{255,165,100}\color{orange}\mathrm e^{\mathrm i \cdot \pi}\color{Black} + 1 = 0 eiπ+1=0

Nummerering og bokse

Har en artikel mange ligninger, fx i en udledning, kan den blive uoverskuelig. Ved at nummere ligninger er det nemmere at refere til dem i teksten. Hvis en ligning er central for artiklens emne, kan den fremhæves med en boks.

Wikipedia kode Resultat
{{NumBlk|:|<math>c^2=a^2+b^2</math>|{{EquationRef|1}}}} Skabelon:NumBlk
{{Equation box 1

|title=
|indent=:
|equation=<math>c^2=a^2+b^2</math>
|cellpadding = 6
|border = 1
|border colour = black
|background colour=white}}

c2=a2+b2

{{Equation box 1

|title=
|indent=:
|equation={{NumBlk|:|<math>c^2=a^2+b^2</math>|{{EquationRef|1}}}}
|cellpadding = 6
|border = 1
|border colour = black
|background colour=white}}

Matematiske formler

Regneoperationer og formateringstegn

Emne <math>...</math> syntaks Resultat
Brøker \frac {a}{b} \textstyle \frac {a}{b} abab
Regneoperationer
Fortegn
(U)ligheder
+, -, \cdot, /, \times
\pm, \mp
=, \neq, \equiv, \not\equiv, \approx, \sim, \propto
\ll, \gg, \le, \ge, \leqq, \geqq
+,,,/,×
±,
=,,,≢,,,
,,,,,
Rodsymboler \surd, \sqrt{42}, \sqrt[n]{x}, \sqrt{ \frac {a}{b}}, \sqrt[3]{ \frac {x^3+y^3}{2}} ,42,xn,ab,x3+y323
Modulus aritmetik s_k \equiv 0 \pmod{m}, a\,\bmod\,b, \mid, \nmid, \gcd(m, n), \operatorname{lcm}(m, n), \operatorname{SFD}(m, n), \operatorname{MFM}(m, n) sk0(modm),amodb,,,
gcd(m,n),lcm(m,n),
SFD(m,n),MFM(m,n)
Mellemrum, bredt a \qquad b \qquad c \qquad d abcd
Mellemrum, stort a \quad b \quad c \quad d abcde
Mellemrum, øget a\; b\; c\; d\; e\; f\; g\ \mathrm U abcdefg 
Mellemrum, standard a\ b\ c\ d\ e\ f\ g\ a b c d e f g 
Mellemrum, smalt a\, b\, c\, d\, e\, f\, g\ abcdefg
Mellemrum, intet abc defg abcdefg
Mellemrum, negativt a\! b\! c\! d\! e\! f\! g\! abcdefg

Hævet og sænket skrift

Emne <math>...</math> syntaks Resultat
Hævet {10}^{8} \; {\mathrm m}^{2} 108m2
Sænket R_\text{Jupiter} RJupiter
Hævet og sænket \mathrm R {}^{\mathrm N}_{\text{⊙}} \; {}^{238}_{\ 92} \mathrm U RN 92238U
Hævet og sænket <math>F_\odot = \sigma \cdot T_{\text{eff}, \odot}^4 = 6.316 \cdot 10^7 \; \text{W/m}^{-2}</math> F=σTeff,4=6.316107W/m2

Afgrænsere

Emne <math>...</math> syntaks Resultat
Stor parentes \left ( \frac{1}{2} \right )
\left ( \frac{a}{b} \right )^2
(12)(ab)2
Lille parentes \left ( \tfrac{1}{2} \right )
\left ( \tfrac{a}{b} \right )^2
(12)(ab)2
Skarp parentes \left [ \frac{a}{b} \right ]
\left \lbrack \frac{a}{b} \right \rbrack
[ab][ab]
Tuborg-parentes \left \{ \frac{a}{b} \right \}
\left \lbrace \frac{a}{b} \right \rbrace
{ab}{ab}
Vinkel-parentes \left \langle \frac{a}{b} \right \rangle ab
Normtegn \left | \frac{a}{b} \right |
\left \Vert \frac{c}{d} \right \Vert
|ab|cd
Gulv og loft \left \lfloor \frac{a}{b} \right \rfloor
\left \lceil \frac{c}{d} \right \rceil
abcd
Skråstreger \left / \frac{a}{b} \right \backslash /ab\
Pil op og ned \left \uparrow \frac{a}{b} \right \downarrow
\left \Uparrow \frac{a}{b} \right \Downarrow
\left \updownarrow \frac{a}{b} \right \Updownarrow
ababab
Blanding \left \langle \psi \right | \quad \left \langle \psi \right | \chi \rangle ψ|ψ|χ
Udeladelse \left \{ \frac{A}{B} \right \} \to X
\left . \frac{A}{B} \right \} \to X
{AB}XAB}X
Store
begrænsere
\big( \Big( \bigg( \Bigg( \dots \Bigg] \bigg] \Big] \big] ((((]]]]
\big\{ \Big\{ \bigg\{ \Bigg\{ \dots \Bigg\rangle \bigg\rangle \Big\rangle \big\rangle {{{{
\big| \Big| \bigg| \Bigg| \dots \Bigg\| \bigg\| \Big\| \big\| ||||
\big\lfloor \Big\lfloor \bigg\lfloor \Bigg\lfloor \dots \Bigg\rceil \bigg\rceil \Big\rceil \big\rceil
\big\uparrow \Big\uparrow \bigg\uparrow \Bigg\uparrow \dots \Bigg\Downarrow \bigg\Downarrow \Big\Downarrow \big\Downarrow
\big\updownarrow \Big\updownarrow \bigg\updownarrow \Bigg\updownarrow \dots \Bigg\Updownarrow \bigg\Updownarrow \Big\Updownarrow \big\Updownarrow
\big / \Big / \bigg / \Bigg / \dots \Bigg\backslash \bigg\backslash \Big\backslash \big\backslash ////\\\\

Mængder og logik

Emne <math>...</math> syntaks Resultat
Talmængder
Naturlige tal, hele tal, rationale tal, reelle tal, komplekse tal, kvaternioner
\mathbb{N}, \mathbb{Z}, \mathbb{Z}_+, \mathbb{Z}_-, \mathbb{Q}, \mathbb{Q}_+, \mathbb{Q}_-,\mathbb{R}, \mathbb{R}_+, \mathbb{R}_-, \mathbb{C}, \mathbb{H} ,,+,,,+,,,+,,,
Mængdesymboler, uendelig [ ], \{ \}, |, \empty, \varnothing, \in, \not\in, \ni, \not\ni, \infty [],{},|,,,,∉,,∌,
Kombination af ovenstående z \in \mathbb{C} \setminus \{ \tfrac{\pi}{2} + p \cdot \pi \, | \, p \in \mathbb{Z} \} z{π2+pπ|p}
Mængdeoperationer: Fællsesmængde, foreningsmængde, mængdedifferens, produktmængde, komplementærmængde \cap, \bigcap, \cup, \bigcup, \setminus, \times, \complement ,,,,,×,
Inklusionstegn \subset, \supset, \subseteqq, \nsubseteqq, \supseteqq, \nsupseteqq ,,,,,
Logiksymboler \forall, \exists, \nexists, \or, \and, \neg, \bot, \top ,,,,,¬,,
Implikationer \Rightarrow, \nRightarrow, \Leftarrow, \nLeftarrow, \Leftrightarrow, \nLeftrightarrow, \Uparrow, \Downarrow, \Updownarrow ,,,,,,,,

Funktioner

Emne <math>...</math> syntaks Resultat
Trigonometriske funktioner \sin (x), \cos (x), \tan (x), \cot (x), \sec (x), \csc (x) sin(x),cos(x),tan(x),cot(x),sec(x),csc(x)
Arcusfunktioner \arcsin (x), \arccos (x), \arctan (x) arcsin(x),arccos(x),arctan(x)
Eksponential- og logaritmefunktioner \exp (x) = e^x, \exp_a (x) = a^x, 10^x, \ln (x), \log (x), \log_{10} (x) exp(x)=ex,expa(x)=ax,10x,ln(x),log(x),log10(x)
Funktioner som "math" ikke kender \operatorname{cis}\,(x) \operatorname{ArctanXY}\,(x,y) cis(x)

ArctanXY(x,y)

Hyperbolske funktioner \sinh (x), \cosh (x), \tanh (x), \coth (x) sinh(x),cosh(x),tanh(x),coth(x)
Areafunktioner \operatorname{arsinh}\,(x), \operatorname{arcosh}\,(x), \operatorname{artanh}\,(x), \operatorname{arcoth}\,(x) arsinh(x),arcosh(x),artanh(x),arcoth(x)
Minimum, maximum, infimum, supremum \min M, \max M, \min(x,y), \max(x,y), \inf M, \sup M minM,maxM,min(x,y),max(x,y),infM,supM
Signum, norm, argument \sgn (x), \left\vert x \right\vert, \lVert z \rVert, \arg (z) sgn(x),|x|,z,arg(z)
Binomialkoefficienter \binom{n}{k}, \tbinom{n}{k} (nk),(nk)

Geometri og vektorer

Emne <math>...</math> syntaks Resultat
Geometriske symboler \parallel, \nparallel, \perp, \angle, \sphericalangle, \measuredangle, 45^\circ, \Box, \blacksquare, \bigcirc, \triangle, \blacktriangle, \blacktriangledown, \blacktriangleleft, \blacktriangleright ,,,,,,45,,,,,,,,
Vektorer vec{a}, \hat{a}, \hat{\vec{a}}, \widehat{a}, \bar{a}, \bar{abc}, \overline{a}, \overline{ABC}, \overrightarrow{AB}, \widehat{\overrightarrow{AB}}, \overleftarrow{CD}, \widehat{ABC}, \parallel, \nparallel, \perp a,a^,a^,a^,a¯,abc¯,a,ABC,AB,AB^,CD,ABC^,,,

Differential- og integralregning

Emne <math>...</math> syntaks Resultat
Differentialer \text{d}t, \partial t, \nabla\psi d t,t,ψ
Differentialkvotienter \text{d} y/ \text{d} x, {\text{d} y\over\text{d} x}, \textstyle {\text{d} y\over\text{d} x}, {\partial^2\over\partial x_1\partial x_2}y dy/dx,dydx,dydx,2x1x2y
Afledede \prime, \backprime, f^\prime, f', f'', f^{(3)}, \dot y, \ddot y ,,f,f,f,f(3),y˙,y¨
Ubestemte integraler \int \cos(x) \, \text{d}x = \sin(x) + K, \iint\limits_D \, \text{d}x\,\text{d}y, \iiint\limits_E \, \text{d}x\,\text{d}y \,\text{d}z cos(x)dx=sin(x)+K,

Ddxdy,Edxdydz

Bestemte integraler
Sidestil
\int\limits_{1}^{3}\frac{\text{e}^3}{x^2}\, \text{d}x, \int_{1}^{3}\frac{\text{e}^3}{x^2}\, \text{d}x 13e3x2dx,13e3x2dx
Bestemte integraler
Linjestil
\textstyle \int\limits_{-N}^{N} \text{e}^x\, \text{d}x, \textstyle \int_{-N}^{N} \text{e}^x\, \text{d}x NNexdx,NNexdx

Formatering af ligninger

arctan(1x)={π2arctan(x)=arccot(x), hvis x>0π2arctan(x)=arccot(x)π, hvis x<0

Emne <math>...</math> syntaks Resultat
Tuborg-parentes \begin{cases} x = \cos(\theta) \cdot r \\ y = \sin(\theta) \cdot r \end{cases} {x=cos(θ)ry=sin(θ)r
Tuborg-funktion (3) f(x) = \begin{cases} 1 & -1 \le x < 0 \\ \frac{1}{2} & x = 0 \\ 1 - x^2 & \text{ellers} \end{cases} f(x)={11x<012x=01x2ellers
Tuborg-funktion (2) f(n) = \begin{cases} \frac{n}{2}, & \text{hvis }n\text{ er lige} \\ 3n+1 & \text{hvis }n\text{ er ulige} \end{cases} f(n)={n2,hvis n er lige3n+1hvis n er ulige
Tuborg-funktion (vandret) f(n) =\underbrace{\tfrac{n}{2}}_{\text{A}}+\underbrace{3n}_{\text{B}} f(n)=n2A+3nB
Opstilling \begin{align} u & = \tfrac{1}{\sqrt{2}}(x+y) \qquad & x &= \tfrac{1}{\sqrt{2}}(u+v) \\ v & = \tfrac{1}{\sqrt{2}}(x-y) \qquad & y &= \tfrac{1}{\sqrt{2}}(u-v) \end{align} u=12(x+y)x=12(u+v)v=12(xy)y=12(uv)
Opstilling \begin{align} f(x) & = (a + b)^2 \\ & = a^2 + 2 \cdot a \cdot b + b^2 \\ \end{align} f(x)=(a+b)2=a2+2ab+b2
Opstilling \begin{alignat}{2} f(x) & = (a - b)^2 \\ & = a^2 - 2 \cdot a \cdot b + b^2 \\ \end{alignat} f(x)=(ab)2=a22ab+b2
Højrejusteret opstilling \begin{array}{lcl} f(x) & = & exprA & = & longexprB & = & exprC\\ & = & exD & = & exprE & = & exprF \\ & = & expressionG & = & exprH \end{array} f(x)=exprA=longexprB=exprC=exD=exprE=exprF=expressionG=exprH
Venstrejusteret opstilling \begin{array}{lcr} f(x) & = & exprA & = & longexprB & = & exprC\\ & = & exD & = & exprE & = & exprF \\ & = & expressionG & = & exprH \end{array} f(x)=exprA=longexprB=exprC=exD=exprE=exprF=expressionG=exprH
Definitioner justeret med "=" \begin{align} \frac{\text {d}}{\text {d} x}\sinh x &= \cosh x \\ \frac{\text {d}}{\text {d} x}\cosh x &= \sinh x \\ \frac{\text {d}}{\text {d} x}\tanh x &= 1 - \tanh^2 x = \operatorname{sech}^2 x = \frac{1}{\cosh^2 x} \\ \frac{\text {d}}{\text {d} x}\operatorname{arsinh} x &= \frac{1}{\sqrt{x^2+1}} \\ \frac{\text {d}}{\text {d} x}\operatorname{arcosh} x &= \frac{1}{\sqrt{x^2 - 1}} && x > 1 \\ \frac{\text {d}}{\text {d} x}\operatorname{artanh} x &= \frac{1}{1-x^2} && |x| < 1 \\ \end{align} ddxsinhx=coshxddxcoshx=sinhxddxtanhx=1tanh2x=sech2x=1cosh2xddxarsinhx=1x2+1ddxarcoshx=1x21x>1ddxartanhx=11x2|x|<1
Definitioner justeret med array \begin{array}{lcl} \frac{\text {d}}{\text {d} x}\sinh x & = & \cosh x \\ \frac{\text {d}}{\text {d} x}\cosh x & = & \sinh x \\ \frac{\text {d}}{\text {d} x}\tanh x & = & 1 - \tanh^2 x = \operatorname{sech}^2 x = \frac{1}{\cosh^2 x} \\ \frac{\text {d}}{\text {d} x}\operatorname{arsinh} x & = & \frac{1}{\sqrt{x^2+1}} \\ \frac{\text {d}}{\text {d} x}\operatorname{arcosh} x & = & \frac{1}{\sqrt{x^2 - 1}} & & x > 1 \\ \frac{\text {d}}{\text {d} x}\operatorname{artanh} x & = & \frac{1}{1-x^2} & & |x| < 1 \\ \end{array} ddxsinhx=coshxddxcoshx=sinhxddxtanhx=1tanh2x=sech2x=1cosh2xddxarsinhx=1x2+1ddxarcoshx=1x21x>1ddxartanhx=11x2|x|<1
Tekst Kode Kode

Matricer

Emne <math>...</math> syntaks Resultat
Matrix-opstilling \begin{matrix} x & y \\ z & u \end{matrix} ,

\begin{matrix} a & b & c\\ d & e & f \end{matrix}

xyzu,

abcdef

Matricer og determinanter \begin{Bmatrix} x & y \\ z & u \end{Bmatrix}, \begin{pmatrix} x & y \\ z & u \end{pmatrix}, \begin{vmatrix} x & y \\ z & u \end{vmatrix}, \begin{Vmatrix} x & y \\ z & u \end{Vmatrix} {xyzu},(xyzu),|xyzu|,xyzu
Små matricer, matricer af dimension 2 og 3 \bigl( \begin{smallmatrix} a&b\\ c&d \end{smallmatrix} \bigr), \begin{Bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{Bmatrix}, \begin{Bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{Bmatrix} (abcd),{a11a12a21a22},{a11a12a13a21a22a23a31a32a33}
Stor matrix \begin{Bmatrix} 1 & \cdots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \cdots & 1 \end{Bmatrix}, \begin{Bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{Bmatrix} {1001},{a11a12a1na21a22a2nan1an2ann}
Stor matrix A = \begin{pmatrix} a_{11} & a_{12} & \ldots & a_{1n} \\ a_{21} & a_{22} & \ldots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \ldots & a_{mn} \end{pmatrix}. A=(a11a12a1na21a22a2nam1am2amn).
Invers Hilbert-matrix H_4^{-1}\ =\ \begin{pmatrix} 16 & -120 & 240 & -140 \\ -120 & 1200 & -2700 & 1680 \\ 240 & -2700 & 6480 & -4200 \\ -140 & 1680 & -4200 & 2800 \end{pmatrix} H41 = (16120240140120120027001680240270064804200140168042002800)
Tabel \begin{array}{|c|c||c|} a & b & S \\ \hline 0&0&1\\ 0&1&1\\ 1&0&1\\ 1&1&0\\ \end{array} abS001011101110

Eksempler på matematiske formler

{a1x1+b1y1=c1a2x2+b2y2=c2

(x1,x2)=(|c1b1c2b2||a1b1a2b2|,|a1c1a2c2||a1b1a2b2|)=(c1b2c2b1a1b2a2b1,a1c2a2c1a1b2a2b1)

arctan(1x)={   π2arctan(x)=arccot(x) hvis x>0π2arctan(x)=arccot(x)π hvis x<0

Fysiske symboler

Emne <math>...</math> syntaks Resultat
Reduceret Planck-konstant, liter-symbol, reciprok ohm \hbar • \ell • \mho ,,
Nuklider og ioner {}_1^1\hbox{H} • {}_1^2\hbox{D} • {}_1^3\hbox{T} • {}_{\,\,92}^{235}\hbox{U} 11H,12D,13T,92235U

Eksempler på fysiske formler

Formatering af fysiske reaktionsligninger sker i simple tilfælde lettest med formateringskoden <chem>...</chem> evt. i kombination med <math>...</math>.

Emne <math>...</math> og/eller <chem>...</chem> syntaks Resultat
Radioaktivitet <chem>^{227}_{90}Th+</chem> A90227A2902227ThA+
<chem>^{238}_{92}U -> ^{234}_{90}Th + ^{4}_{2}He</chem> A92238A2922238UA90234A2902234Th+A24A2224He
<math>{}^{238}_{\ 92} \mathrm U \to {}^{234}_{\ 90} \mathrm{Th} + \;{}^4_2\mathrm{He} </math>  92238U 90234Th+24He
<chem>^{146}_{62}Sm -> ^{142}_{60}Nd + ^{4}_{2}He + 2{,}529 MeV</chem> A62146A2622146SmA60142A2602142Nd+A24A2224He+2,A529MeV
<chem>^{198}_{79}Au -> ^{198}_{80}Hg</chem><math>\, + \mathrm{e}^{-}+ \overline{\nu}_e </math> A79198A2792198AuA80198A2802198Hg+e+νe
<math>{}^{198}_{\ 79} \mathrm {Au} \to {}^{198}_{\ 80} \mathrm {Hg} + \mathrm{e}^{-}+ \overline{\nu}_e </math>  79198Au 80198Hg+e+νe
<math>{}^{40}_{19} \mathrm {K} \to {}^{40}_{18} \mathrm {Ar} + \mathrm{e}^{+} + \nu_e </math> 1940K1840Ar+e++νe
<math>{}^{A}_{Z} \mathrm {X} \to {}^{A-4}_{Z-2} \mathrm {Y} + {}^{4}_{2} \mathrm {He} + \Delta E </math> ZAXZ2A4Y+24He+ΔE
<math>{}^{A}_{Z} \mathrm {X} \to {}^{A}_{Z+1} \mathrm {Y} + \mathrm{e}^{-} \mathrm + \overline{\nu}_e</math> ZAXZ+1AY+e+νe
<math>\hbox{n}\to\hbox{p}+\hbox{e}^-+\overline{\nu}_{\mathrm{e}}</math> np+e+νe
<math>{}^1_0\hbox{n}\;\to\;{}^1_1\hbox{p}\;+\;_{-}{}^0_{1}\hbox{e}\;+\;\bar{\nu}_e </math><nowiki> 01n11p+10e+ν¯e
<math>{}^{137}\mathrm{Ba}^{*} \rightarrow {}^{137}\mathrm{Ba} + \gamma</math> 137Ba*137Ba+γ
<math>{}^{14}_{\ 6}\mathrm{C} \rightarrow {}^{14}_{\ 7}\mathrm{N} + {}^{\ 0}_{-1}\mathrm{e} + \bar{\nu}_\mathrm{e} </math>  614C 714N+1 0e+ν¯e
<math>{}^1_1\hbox{p}\;\to\;{}^1_0\hbox{n}\;+\;_{+}{}^0_{1}\hbox{e}\;+\;\nu_e </math> 11p01n++10e+νe
<math>{}^{22}_{11}\mathrm{Na} \rightarrow {}^{22}_{10}\mathrm{Ne} + {}^{\ 0}_{+1}\mathrm{e} + \nu_\mathrm{e}</math> 1122Na1022Ne++1 0e+νe
Kernereaktioner <math>{}^1_0\hbox{n}\;\to\;{}^1_1\hbox{p}\;+\;_{-}{}^0_{1}\hbox{e}\;+\;\bar{\nu}_e </math> 01n11p+10e+ν¯e
<math>{}^{14}_{\ 6}\mathrm{C} \rightarrow {}^{14}_{\ 7}\mathrm{N} + {}^{\ 0}_{-1}\mathrm{e} + \bar{\nu}_\mathrm{e} </math>  614C 714N+1 0e+ν¯e
<math>{}^1_1\hbox{p}\;\to\;{}^1_0\hbox{n}\;+\;_{+}{}^0_{1}\hbox{e}\;+\;\nu_e </math> 11p01n++10e+νe
<math>{}^{22}_{11}\mathrm{Na} \rightarrow {}^{22}_{10}\mathrm{Ne} + {}^{\ 0}_{+1}\mathrm{e} + \nu_\mathrm{e} </math> 1122Na1022Ne++1 0e+νe
<math>{}^{238}_{\ 92} \mathrm U \to {}^{234}_{\ 90} \mathrm{Th} + \;{}^4_2\mathrm{He}</math>  92238U 90234Th+24He

Kemiske formler

Emne <chem>...</chem> syntaks Resultat
Tekst med formler Hvis <chem>H3O+</chem> aftager, så må <chem>CH3CO2H</chem> vokse og <chem>CH3CO2-</chem> må aftage.

Bemærk, at et minustegn i koden skal skrives som en bindestreg (der er let tilgængelig på tastaturet)...

Hvis HA3OA+ aftager, så må CHA3COA2H vokse og CHA3COA2A må aftage.

... men vises som et minustegn (hvilket er korrekt).

Formler og reaktioner

<chem>(NH4)2S</chem>
<chem>CO3^{2-}(aq)</chem>
<chem>KCr(SO4)2*12H2O</chem>
<chem>C6H5-CHO</chem>
<chem>A-B=C#D</chem>
<chem>Fe^{II}Fe^{III}2O4</chem>
<chem>[Fe(\eta^5-C5H5)2]</chem>
<chem>HA + B -> A + HB</chem>
<chem>NaCl + AgNO3 -> NaNO3 + AgCl(v)</chem>
<chem>Mg + 2H2O -> Mg(OH)2 + H2 (^)</chem>
<chem>Pb(NO3)2 + 2KI -> PbI2(v) + 2KNO3</chem>
<chem>\underset{syre}{HA} + \underset{base}{B} <=> \underset{korresponderende\ base}{A^-} + \underset{korresponderende\ syre}{HB+}</chem>
<chem>CaSO4.1/2H2O + 1\!1/2 H2O -> CaSO4.2H2O</chem>
<chem>{C_\mathit{x} \, H_\mathit{y}} + \mathit{z} \, O2 -> {\mathit{x}CO2} + \frac{\mathit{y}}{2}H2O</chem>
<chem>^{227}_{90}Th+</chem>
<chem>^{238}_{92}U -> ^{234}_{90}Th + ^{4}_{2}He</chem>

(NHA4)A2S
COA3A2(aq)
KCr(SOA4)A212HA2O
CA6HA5CHO
AB=CD
FeAIIFeAIIIA2OA4
[Fe(ηA5-CA5HA5)A2]
HA+BA+HB
NaCl+AgNOA3NaNOA3+AgCl(v)
Mg+2HA2OMg(OH)A2+HA2
Pb(NOA3)A2+2KIPbIA2(v)+2KNOA3
HAsyre+BbaseAAkorresponderende base+HBA+korresponderende syre
CaSOA412HA2O+112HA2OCaSOA42HA2O
Fejl i matematikken (syntaksfejl): {\displaystyle \ce{{C_\mathit{x} \, H_\mathit{y}} + \mathit{z} \, O2 -> {\mathit{x}CO2} + \frac{\mathit{y}}{2}H2O}}
A90227A2902227ThA+
A92238A2922238UA90234A2902234Th+A24A2224He

Ligninger med kemiske formler <math chem>K=\frac {\{\ce{CH3CO2-}\}\{\ce{H3O+}\}} \ce{\{CH3CO2H\}}</math> <math> \Delta_\mathrm{r}G_{T,p}=\sum_{i=1}^k \mu_i^\ominus \cdot \nu_i + R \cdot T \cdot \ln \frac{\{\mathrm{S}\}^\sigma \cdot \{\mathrm{T}\}^\tau} {\{\mathrm{A}\}^\alpha \cdot \{\mathrm{B}\}^\beta} </math> K={CHA3COA2A}{HA3OA+}{CHA3COA2H}

ΔrGT,p=i=1kμiνi+RTln{S}σ{T}τ{A}α{B}β

Generel reaktionsligning <chem> \alpha_1 R1{} +\alpha_2 R2{} +...+\alpha_{\mathit i} R_{\mathit i}{} +...\rightarrow \nu_1 P1{} + \nu_2 P2{} +...+\nu_{\mathit j} P_{\mathit j}{} +...</chem> αA1RA1+αA2RA2++αAiRAi+νA1PA1+νA2PA2++νAjPAj+
<math>\alpha_1 \rm{R}_1 +\alpha_2 \rm{R}_2 +...+\alpha_i \rm{R}_i +...\rightarrow \nu_1 \rm{P}_1 + \nu_2 \rm{P}_2 +...+\nu_j \rm{P}_j +...</math> α1R1+α2R2+...+αiRi+...ν1P1+ν2P2+...+νjPj+...


Eksempler på kemiske formler

αμA+βμB=σμS+τμT
dG=VdpSdT+i=1kμidNi.
ΔrGT,p=σμS+τμTαμAβμB.
ΔrGT,p=((σμS+τμT)(αμA+βμB)+(σRTln{S}+τRTln{T})(αRTln{A}+βRTln{B})
i=1kμiνi=ΔrG